Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Stroke patients often experience a significant temporal delay between the onset of ischemia and the time to initiation of therapy. Thus, there is a need for neuroprotectants with a long therapeutic window of opportunity. The efficacy of a potent, central nervous system-penetrating calpain inhibitor (MDL 28,170) was evaluated in a temporary model of focal cerebral ischemia to determine the window of opportunity for intracellular protease inhibition. METHODS An ex vivo brain protease inhibition assay established pharmacodynamic dosing parameters for MDL 28,170. Middle cerebral artery (MCA) occlusion was accomplished by advancing a monofilament through the internal carotid artery to the origin of the MCA. Postmortem infarct volumes were determined by quantitative image analysis of triphenyltetrazolium-stained brain sections. RESULTS Maximal inhibition of brain protease activity was observed 30 minutes after injection of MDL 28,170 with an estimated pharmacodynamic half-life of 2 hours. MDL 28,170 caused a dose-dependent reduction in infarct volume when administered 30 minutes after MCA occlusion. A window of opportunity study was conducted to determine the maximal delay between the onset of ischemia and the initiation of efficacious therapy. MDL 28,170 reduced infarct volume when therapy was delayed for 0.5, 3, 4, and 6 hours after the initiation of ischemia. The protective effect of MDL 28,170 was lost after an 8-hour delay. CONCLUSIONS These data indicate that the therapeutic window of opportunity for calpain inhibition is at least 6 hours in a reversible focal cerebral ischemia model. This protection is observed despite the lethal hypoxic and excitotoxic challenge, suggesting that calpain activation may be an obligatory, downstream event in the ischemic cell death cascade.
منابع مشابه
Inhibition of Angiotensin-Converting Enzyme Reduces Cerebral Infarction Size in Experimental-Induced Focal Cerebral Ischemia in the Rat
Background: The role of Renin Angiotensin System (RAS) in ischemic/reperfusion (I/R) injuries is not fully elucidated. Furthermore, it is not clear whether inhibition of RAS by Angiotensin-Converting Enzyme (ACE) inhibitors has beneficial effects in terms of protecting the brain from I/R injuries. In this study enalapril is used as an ACE inhibitor to evaluate the role of RAS in I/R injuries in...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملAttenuation of Focal Cerebral Ischemic Injury Following Post-Ischemic Inhibition of Angiotensin Converting Enzyme (ACE) Activity in Normotensive Rat
Background: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain inf...
متن کاملResearch Paper: Optimization of Transient Focal Cerebral Ischemia Model by Middle Cerebral Artery Occlusion
Introduction: Cerebral ischemia is one of the most common causes of death in human populations in the industrial communities. The need for animal models is inevitable to study the pathophysiology and treatment of cerebral ischemia in human. The current study aimed at evaluating the strengths and weaknesses of different techniques used to create ischemia in previous studies and optimizing the tr...
متن کاملPre-Ischemic Treatment of Pentoxifylline Reduces Infarct Volumes in Transient Focal Cerebral Ischemia in the Rat
Background: Pentoxifylline (PTX) is used in human for intermittent claudication and cerebral vascular disorders including cerebrovascular dementia. It also inhibits the synthesis of tumor necrosis factor-α (TNF-α), which is believed to be neurotoxic in animal models of cerebral ischemia. The objective of this study was to examine the role of PTX on ischemia/reperfusion injures in rat model of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 29 1 شماره
صفحات -
تاریخ انتشار 1998